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Single crystals of barium hexaaluminate (phase I, barium p-alumina) with the composition 
Ba,,68A111017.18 have been obtained by zone melting. X-ray and electron diffuse scattering give evidence 
of local ordering between Ba and vacancies. This short-range order is simulated by a Monte Carlo-type 
routine and can be described as a two-dimensional superstructure aa X aV?, covering about 60 A 
and limited by zones which contain vacancies or barium clusters. D 1988 Academic Press. Inc. 

Introduction 

For quite a long period, barium hexa- 
aluminate was given the BaA1120,9 for- 
mula, corresponding to the magnetoplum- 
bite structure, which generally occurs in 
divalent-ion hexaaluminates (I). During the 
last decade, however, many studies de- 
voted to this family of compounds revealed 
that this ideal description was not correct: 
the true composition range is from 0.8 to 
1.3 BaO for 6A1203. Moreover, two differ- 
ent phases have been identified, phase I 
(41) with low barium content and phase II 
(@I). Phase I has a P-alumina-type struc- 
ture (2-5). 

The main feature of this structure is its 
hexagonal symmetry, (P63lmmc space 
group), and Ba atoms are gathered in some 
specific layers of the host lattice (Fig. 1). 
Therefore, one can expect vacancies or ex- 
cess of barium, resulting from the actual 
composition, more or less disordered on 
the hexagonal network of Ba sites. 

We have prepared single crystals of Ba 
$1 phase with a definite composition, for 
which both X-ray and electron diffraction 
patterns give evidence of strong diffuse 
scattering together with the expected Bragg 
diffraction. This suggests the presence of 
short-range order superimposed on the av- 
erage structure of this barium aluminate. 

The purpose of this work was to find an 
interpretation of the diffuse scattering, in 
relation with this possible short-range or- 
dering between occupied and vacant sites 
of barium. 

Short-Range Order and Diffuse Scattering 

Diffraction is expected in crystals with 
long-range order, i.e., infinite correlation 
distance. In other terms, this means that 
knowing the arrangement in a given point of 
the crystal lattice, it is possible to deduce 
the arrangement on any lattice point. 

Whenever a local organization takes 
place, diffuse spots or lines are observed on 
the diffraction patterns, in addition to the 

295 0022-4596/t% $3.00 
Copyright Q 1988 by Academic Press, Inc. 

All tights of reproduction in any form reserved. 



296 KAHN ET AL. 

FIG. 1. Schematic description of mirror planes in 
/3-alumina-type structure. 

Bragg spots (6). Several phenomena can 
produce diffuse scattering, such as: 

(a) Atomic shifts arising from electron- 
phonon interaction; this results in patterns 
where diffuse scattering exhibits increasing 
intensity when going from the center (Bragg 
angle = 0”) to the outer part of the dia- 
grams. This is generally observed in IVB 
and VB transition metal dichalcogenides 
(7). 

(b) Static substitution disorder, where the 
diffusion arises from a partial and local or- 
ganization of atoms (in binary alloys for in- 
stance), or of vacancies (in nonstoichio- 
metric compounds). The diffuse scattered 
intensity then decreases from the center to 
the outer part of the patterns. This was de- 
scribed, for instance, in Tii+& (8). 

Both types of disorder may coexist in the 
same phase, resulting in a more complex 
diffraction pattern. 

Experimental 

(I) Crystal Growth 

Single crystals are prepared by a zone 
melting process in an arc-image furnace, 
operating at 1950°C and starting from rods 
sintered at high temperature (1500-1600”). 
After repeated zone melting this method 
provides crystalline rods of a few millime- 
ters in diameter and several centimeters in 

length. These have easy cleavage planes 
perpendicular to the hexagonal c axis and 
parallel to the growth axis. The final com- 
position of all such crystals was established 
by electron microprobe analysis and is 
close to BG.~~AI,,O~~.~~ (9), in spite of 
variable starting proportions of oxide mix- 
tures. 

(2) Diffuse Scattering Evidence 

The experimental device to observe X- 
ray diffuse scattering has been previously 
reported (IO). Let us recall the basic princi- 
ples of the method: 

-the crystal and films are stationary; 
-strictly monochromatic0 radiation is 

used (here AMoKa = 0.7107 A); 
-the transmission pattern is obtained 

after several days exposure and shows the 
reciprocal layers perpendicular to the X-ray 
beam. 

All diffraction patterns obtained from 
crystalline platelets of phase 41 show the 
same aspect when the X-ray beam is 
aligned with the c hexagonal axis (Fig. 2). 
Then diffuse scattering appears in [OOJ] 
planes as periodic hexagonal rings, with 
some reinforced diffuse spots; no diffusion 
is found where true diffraction occurs. We 
will then handle the problem in a two-di- 
mensional lattice. 

Samples with the same origin were also 
examined by electron microscopy and their 
electron diffraction patterns exhibit diffuse 
spots and lines with the same localization 
with respect to Bragg diffraction (Fig. 3). 

In our case, for the first reciprocal unit 
cells, it seems reasonable to assess that dif- 
fuse scattering originates mainly from a 
substitution ordering of Ba and vacancies 
on their sites in the mirror planes of the 
structure. 

Interpretation of Extra Spots 

Starting from the average reciprocal lat- 
tice derived from the Bragg spots, it is pos- 
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FIG. 2. X-ray diffuse scattering pattern of 41 Ba hexaaluminate. 

FIG. 3. Electron diffraction pattern of ~$1 phase (JEOL 2OOOFX). 



298 KAHN ET AL. 

FIG. 4. Two-dimensional superstructure aV? x 
afi, for 2 Ba/l vacancy on a hexagonal lattice. 

sible to define a new reciprocal lattice, by 
assuming the intense diffuse spots at the 
vertices of hexagonal rings to be diffraction 
spots (which they are not in fact). This cor- 
responds in real space to a superstructure 
for which the unit cell is related to the aver- 
age structure by the following relationships 
(Fig. 4): 

-if a and b are the lattice constants of 
the basic hexagonal unit cell, the super- 
structure cell is ae x afi and turned by 
30”. 

-this supercell contains 3 Ba2+ sites of 
which one is vacant, according to the com- 
position (0.67 Ba instead of 1). 

Corresponding to this superstructure 
cell, a possible ordering scheme is given: 
every third Ba site is vacant on the basic Ba 
lattice. This can also be described as a hon- 
eycomb of Ba hexagons centered by a va- 
cancy. Then, instead of an average 2D lat- 
tice (P6mm) where Ba sites are statistically 
occupied by fBa2+, we have a supercell 
with a vacant site in (0,O) and two Ba in (3, 
3) and (3, 4) positions (Fig. 4). 

In such a superstructure, any Ba site has 
six nearest neighbors of which three are oc- 
cupied and three are vacant. In a statistical 

nonstoichiometry, for six sites, two would 
be vacant and four occupied, according to 
the composition (Fig. 5). 

Diffuse spots and Bragg spots are in- 
dexed in the same 2D reciprocal super- 
structure lattice. An evaluation of corre- 
sponding diffuse scattered intensity Id is 
given by the relationship: 

zdhk = IFhk - (&>I2 (ZZ), 

with Fhk = structure factor of an ordered 
model (two-dimensional supercell) and 
(Fhk) = structure factor of a statistical 
model (two-dimensional supercell). In the 
new lattice, Bragg spots have indexes ruled 
by the condition: 

2h + k = 3n (n E z) 

and Zd is always found as zero for those 
spots, as expected from experimental pat- 
terns. 

Taking the extra spots as superstructure 
spots, we then have a long-range ordered 
model, which does not yet account for the 
diffuse nature of extra spots and lines. This 
problem is treated in the next section. 

FIG. 5. Count of successive neighbors of a site in a 
hexagonal 2D lattice. 
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TABLE I 
ORGANIZATION OF THE COMPUTING ROUTINE FOR MODELING 

SHORT-RANGE ORDER 
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Experimental Diffuse intensity map 
-diffuse intensity map e Validity - from the computed model 

(reciprocal space) of the model (reciprocal space) +- 
I 

PATTERSON 
i 

-Self correlation fonction ( + (cui) Coefficients 
local order coefficients (oi) 

I 
COORDINATION 

4 
-Experimental map of average t--j Correlation - Computed a.n.n. of 

number of neighbors (a.n.n.) tests the model 
(real space) 

MODEL 
COMPUTATION 

J I 
-Random distribution of ions - Random jumps - Computed model 

on available sites between vacant of local order - 
(starting model) and occupied sites (real space) 

Short-Range Ordering 

In order to study the local order, i.e., or- 
ganization in microdomains, we have used 
a direct method, previously designed in our 
laboratory, to study short-range order in 
nonstoichiometric titanium disulfides (12). 

It is a computerized trial and error 
method, based on a Monte Carlo calcula- 
tion. It leads to a computed structural 
model, starting from raw experimental dif- 
fused intensities, average site lattice, and 
phase composition. This interpretation is 
derived from calculation of short-range or- 
der parameters, assuming an ideal location 
of diffuse intensity. It works in three dis- 
tinct steps, which are described in Table I: 

(1) From a generalized Patterson function 
performed with experimental diffuse inten- 
sities, short-range order coefficients- 
Cowley coefficients (13)-are computed 
and the average number of neighbors 
(a.n.n) in our compound is deduced. This 

gives the coupling probabilities of atoms in 
our structure. 

(2) A computed model, consistent with 
this experimental map of neighbors, is built. 

(3) The validity of this model is tested by 
comparison of the Fourier transform of the 
computed model with the experimentally 
recorded diffuse intensities. 

The main points of each step are reported 
hereafter. 

(1) Exploitation of Experimental Diffuse 
Scattering 

On the diffuse scattering patterns (recip- 
rocal lattice), it is possible to account for 
the diffusion by a set of points where an 
estimated value of intensity is attached to 
coordinates u, u (Fig. 6). 

Then a two-dimensional domain is de- 
fined, involving the maximum number of 
neighbors to be considered for a given Ba 
site, on the hexagonal Ba network. Here it 
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FIG. 6. Schematic description of diffuse scattering 
data. 

includes the 28th neighbor, owing to the 
size of details on the diffusion pattern. 

By means of a generalized Patterson 
function, we get the successive oi and lower 
indices al, a2, . . . , a28 coefficients for 
short-range order in our compound. Let us 
recall here that al, for instance, is given by 

where P,B is the probability of finding Ba/ 
vacancy pairs in a structure with local or- 
der, pstat is the probability of finding Ba/ 

vacancy pairs in a statistical structure with 
5 vacancies on the lattice (our example). 
Then, in a general case: 

-if al < 0, the structure tends to bar- 
ium-vacancy pairs, i.e., ordering; 

-if CY~ > 0, the structure tends to clus- 
tering of Ba-Ba or vacancy-vacancy, i.e., 
segregation of the two species; 

-if q = 0, the organization is statisti- 
cal, ruled by the concentration of vacan- 
cies. 

In Table II the resulting values of average 
number of neighbors (a.n.n.) in our com- 
pound are given; they are compared to the 
theoretical values expected: 

(a) in a random structure with 4 vacancies 
and SBa; 

(b) in a long-range ordered superstruc- 
ture as the one described in the first part of 
this paper. 

The values of our phase range between 
those two lists (except for the 7th neighbor, 
which will be explained later on). 

(2) Computing a Short-Range Order 
Model 

The second step deals with simulation of 
a computed model of short-range order be- 
tween Ba and vacancies, which exhibits the 
same “map of average number of neigh- 

TABLE II 
COMPARISON OF THE EXPERIMENTAL SUCCESSIVE NUMBERS OF 

NEIGHBORS TO THE THEORETICAL ONES 

Full structure Structure with 
(1 W 0.67 Ba 

Number of 
nth neighbors 

Random 
structure 

Experimental 
number 

of neighbors 
Long-range ordered 

structure 

1st neighbor 6 4 3.27 3 Ba + 3 lat. 
2nd neighbor 6 4 4.77 6 Ba 
3rd neighbor 6 4 4.00 3 Ba + 3 lat. 
4th neighbor 12 8 6.79 6 Ba + 6 lat. 
5th neighbor 6 4 4.06 6 Ba 
6th neighbor 6 4 4.32 6 Ba 
7th neighbor 12 8 8.69 6 Ba + 6 Iac. 

28th neighbor 12 8 7.80 6 Ba + 6 lat. 
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NUttBEROFJUWS=15001 
NUtlEER OF SITES = IS36 

(3) Testing the Consistency of the Model 

HUHBERm ATOMS:1024 The last section deals with the validity of 
AGREEMENf FACTOR I 0.0234 this model for short-range order. A Fourier 
Avomgo oumbsf of W@Bom : transform is performed with the computed 

obo. COIC. ohs. Cole. 
3 I2 3 35 3.02 3.01 model and provides the corresponding dis- 
461 4.73 6.22 65 
362 353 6.02 60 5 tribution of diffused intensities. If com- 
6.28 668 8 10 6.07 
4.00 406 3.16 3.03 pared to the diffuse scattering data origi- 
4.02 3.92 2.99 2.86 
7.66 7.50 7.49 7.27 

nally introduced (Fig. 6), it appears that 
3 I4 321 5.84 5.63 
6.60 6.74 5.49 5.52 

intensity does occur where it is expected, in 
685 6.87 596 6.16 
4.16 4.03 561 5.72 

the “Bragg” lattice, with correct hexagonal 
3.57 3 36 4.02 394 
7 131 7.59 7 65 7.50 

symmetry and reinforced spots at (4, 3) and 
6.17 6.17 5.62 5.45 (Q, Q) positions in the average reciprocal cell 

FIG. 7. Computed model for short-range order in 
(Fig. 8). 

phase I. 

Description of Short-Range Order 
bors” as that deduced in the previous step. 

Starting from a random distribution of The model of Fig. 9 is considered as the 

2N/3 Ba on N possible sites on a hexagonal 
best one, with regard to the agreement be- 

grating, a Monte Carlo routine works by 
tween experimental and simulated average 

exchanging Ba and vacancy in a pair, re- 
number of neighbors (R = 0.0234) and to 

peating these jumps a great number of times 
the distribution of diffuse intensity. It is in 

in order to fit the experimental Q’S. These fact straightforward derived from the array 

exchanges modify the environment of a 
of occupied/vacant sites plotted on a hex- 

given site, and the corresponding average 
agonal lattice. 

number of neighbors is computed. A fitting 
This computed model consists of ordered 

test is done at regular intervals (here after domains covering a few unit cells. The lim- 

every 500 jumps) to compare the experi- its are disrupted zones where clusters of 

mental a.n.n. and those of the computed 
vacancies or of Ba sites are found. 

model. When the reliability factor R seems 
A closer look at the ordered regions re- 

stationary, the model no longer improves veals that they are made of Ba hexagons 

and is taken as one possible description of with vacancy in their center; this organiza- 

local order between Ba ions and vacancies. tion is exactly the one described as the pos- 

Further experimental details are given in 
Fig. 7: 

-The starting array consists of 36 x 
36 or 48 x 48 sites; it has to be larger than 
the environment explored for computing 
the experimental ai, and not too large so as 
to avoid too long a computing time (36 X 
36 = 1296 sites). 

-The number of jumps ranges be- 
tween lo4 and 2.104 before getting a steady 
value of R factor, about 0.025. 

The final model is either plotted (Fig. 7) 
(.---- ----) 

or filed as an array of 1 and 0 (1 = occup. FIG. 8. Fourier transform of the computed model, 
site, 0 = vat.). giving diiuse intensities in the reciprocal unit cell. 
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0 

FIG. 9. Modeling of short-range order, showing the 
ordered zones, edged by regions of Ba or vacancy 
clustering. 

sible long-range order with a%‘? x ati unit 
cell. 

These ordered regions stretch as far as 
the 7th neighbor (more or less); this could 
explain the unexpected high value for this 
average number of 7th neighbors that we 
found previously (see Table II) since, after 
the 7th neighbor, the consistency of local 
organization is lost. 

The validity of that description also leans 
on the following points: 

-If either our description of experi- 
mental diffuse scattering or the assumed 
barium concentration is varied, the result- 
ing computed models are not consistent 
with experimental data. For a higher Ba 
content for instance, the model exhibits 
segregation into large domains, some with 
afi x afi superstructure, some with to- 
tal disorder. 

-The ordered domains occurring in 
the “good” models are always within the 
range of the analyzed region (<28th neigh- 
bor) and their size (50-60 A) corresponds to 
the one deduced from the width of diffused 
spots and stripes by the Scherrer formula 
(14): 

L = khlAcos 0, 

where k is a constant of the diffracting de- 
vice (60 mm), A is the X-ray wavelength 
MoKcu, 0.7107 A; A is the width of diffusion 
spots, 1 mm; 8 is the Bragg angle in the 
considered region ( 15”). 

With these values, L is found to be around 
44 A. 

With regard to these features the simu- 
lated model of short-range order in Ba 41 
looks consistent. 

Some improvements are yet required to 
get a more comprehensive description of lo- 
cal arrangement. They are: 

-quantitative evaluation of diffuse 
scattering intensities; 

-increased computing time to extend 
the number of neighbors; 

-correction of edge effect (on the 
edges, the statistical number of neighbors is 
not correct). This is already corrected in 
the routine and the influence is not negligi- 
ble. Exploring circular domains within the 
hexagonal unit cell is a way to reduce the 
edge effects and it is already done in the 
computation. A larger explored domain 
would also minimize these effects. With 
such better conditions we hope to improve 
our description. 

Meanwhile, our model accounts qualita- 
tively for a local organization in $1 Ba 
hexaaluminate. On the 2D (a x a) hexago- 
nal lattice of barium sites, 5 of Ba and f of 
vacancies are locally ordered in a super- 
structure aV3 X aV3, covering a few unit 
cells (50 A). These ordered regions are sep- 
arated by perturbated zones, containing 
clusters of Ba or of vacancies, which do not 
exhibit the same environment as in the or- 
dered zones. 

Conclusion 

We have been able to observe X-ray dif- 
fuse scattering in 41 Ba hexaaluminate with 
low barium content (0.68 Ba in a p-alumina- 
type structure). This can be related to a 
short-range order between Ba and vacan- 
cies, on the Ba 2D hexagonal network. This 
local ordering consists of limited domains 
of superstructure, spread over 50 A, and 
edged by zones with modified environ- 
ments made of Ba or vacancy clusters. 
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Other authors have published electron 
diffraction patterns of /3Ba ~$1 where no dif- 
fuse scattering could be detected (15). 

This main discrepancy with our results is 
probably due to the difference of chemical 
composition of their samples: their crystals 
have a higher Ba content (Ba,,78Al10.9017,,4), 
which does not favor the creation of such 
ordered domains as those we handle (aV? 
hexagonal superstructure). 
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